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Introduction
The desire to observe matter at ever-smaller details 

and scales possible so as to resolve its deepest fabric 

has always been a driving force in the exploration of 

the physical world. From the early visual inspection 

to the modern sophisticated detectors, material 

characterization has invoked a variety of tools 

operating at different length scales. Photons and 

electrons, through reflection, refraction, transition 

and tunneling can probe the physical and chemical 

properties of many materials and have provided the 

basis for some of the most powerful investigative 

and exploratory microscopy techniques. In addition, 

more recently, scanned probes have opened 

up new possibilities for obtaining physical and 

chemical properties of materials, some of which 

not amenable to direct studies by photons and 

electrons, thus broadening the class of materials that 

can be examined. However, two major challenges 

continue to prevail, albeit progress continues to be 

made in overcoming them: non-destructive high-

resolution subsurface probing capability and high 

spatial and spectral resolution chemical mapping. 

In a recent study supported by the BioEnergy 

Science Center (BESC) at the US Department of 

Energy’s Oak Ridge National Laboratory, it was 

demonstrated that simultaneous mechanical and 

chemical mapping at high resolution is feasible 

using the hybrid photonic nano-mechanical force 

microscopy (HPFM). HPFM, introducing a new and 

general modality that contributes to overcoming 

the challenges associated with both spectroscopic 

and microscopic characterization of a broad class of 

materials, was demonstrated by studying the effect 

of a sequence of chemical processing of biomass. 

The processing is under study to facilitate a more 

effective release of sugars that can be converted to 

biofuel through delignification. 
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The ongoing effort to achieve high-resolution nondestructive 
nanometrology for material characterization has recently 
generated many exciting venues in the domains of multi-
frequency and multi-excitation exploration. An example is 
the newly developed hybrid photonic-nanomechanical force 
microscopy (HPFM), which through its chemical, mechanical, 
and subsurface measurement capabilities furnishes a window 
into the nanoscale properties of plant cells. While the approach 
has been demonstrated successfully to obtain simultaneous 
chemical and morphological information from cross sections 
of Populus deltoids, the path to a complete characterization 
is not yet one without difficulties mainly due to inadequate 
specific instrument development. Nevertheless, in light of 
new observations and discoveries in the probe-sample system 
dynamics, it is possible to lift this inadequacy by invoking 
specialized peripheral instrumentation. Here we address how 
we may experimentally characterize plant cells by capitalizing 
on multiple mechanical and optical sample excitations in a 
hybrid fashion. 

Fig 1: Setup of hybrid photonic-nanomechanical force microscopy (HPFM). The non-linear force between the probe tip and the sample allows 
mixing of the forcings on the probe (F

p1
 and F

p2
) and the forces induced by the modulated spectral absorption of the QCL beam. This highly 

sensitive actuation system is used for the investigation of Populus cross-sections at various chemical treatment stages designed for biomass ethanol 
production.
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Plants, in all its diversity, are ubiquitous in our 

planet with forests covering an estimated area of 

32,688,000 km2 [Hansen et al. (2010)]. Participating 

through photosynthesis, oxygen consumption, 

and carbon dioxide emission, the various plant 

populations not only control the climate and vital 

signs of life on earth but also provide feedstock 

for biofuels. Recent dual efforts to boost energy 

efficiency and renewable energy have rendered 

biomass feedstock as an important green source 

for large scale biofuel production. An important 

element in the multidisciplinary scientific research 

undertaken for an efficient conversion of non-food 

plants to biofuel is an understanding of the effect 

of the individual chemical processing steps that 

would break down the plant cell wall and release 

the sugars contained therein. Therefore, nano-scale 

information on both structure and organization 

of the various organic materials making up the 

cell walls is necessary. Measurement of the plant 

biological material properties at the nanoscale, 

that is, nanometrology of plant cells, is however 

no straightforward task. What is certain is that 

the question of exactly how one may go about 

carrying out meaningful nanoscale measurements, 

that is, obtaining a complete set of self-consistent 

quantitative results on the physical and chemical 

properties of given plant cell walls not only cannot 

be currently fully answered, but also cannot be 

generated from a single instrument. Quantitatively, 

however, employing an array of instruments, one 

could investigate various relevant cell properties 

such as morphology, subsurface features, lignin 

and cellulose content, and elasticity. Therefore, 

instruments that can perform mixed measurement 

modalities are highly sought after.

Hybrid photonic nano-
mechanical force microscopy
The atomic force microscope (AFM) [Binnig et al. 

(1986), Herruzo et al. (2014)], in its traditional form, 

is a practical member of the larger class of scanning 

probe microscopes (SPM), offering a versatile 

platform for the study of plant cells at the nanoscale.  

Innovative measurement modalities of the AFM are 

however required to characterize plant biological 

materials beyond topographic mapping. In this 

article we discuss how simultaneous mechanical 

and optical excitations of samples of biomass can 

provide new information on the chemistry and 

morphology of plant cell walls.         

In AFM, in addition to pure contact mechanical 

forces, several forces due to presence of electric 

charges, carrier generation and light scattering, 

capillary forces, and thermo-mechanical forces can 

be involved in the generation of a signal. Each of these 

forces can offer different or corroborative views of 

the sample. Under strict environmental control, a 

collection of the atoms making up the cantilever 

probe tip interact via van der Walls forces with a 

collection of sample atoms immediately underneath 

the apex of the tip. This force, being nonlinear in 

its spatial dependency, causes or “synthesizes” 

oscillation components at frequencies other than 

those explicitly involved from excitation frequencies. 

This is the hallmark of many nonlinear phenomena 

and can be observed in other branches such as 

nonlinear optics, spectroscopy and plasmonics and 

is the basis for the operation of mode synthesizing 

atomic force microscopy (MSAFM). 

In hybrid photonic-nanomechanical force 

microscopy (HPFM) [Tetard et al. (2015)], the 

sample is exposed to modulated infrared light, 

whereupon the optical absorption associated with 

the molecular composition of the sample leads 

to small mechanical actuations emerging at the 

modulation frequency. This optically-induced sample 

displacement in turn modulates the probe-sample 

distance allowing the nonlinear forces of the probe-

sample dynamics to encode chemical information.  In 

Figure 1, the probe is driven by piezoelectric (PZT) 

element exerting two mechanical forces, Fp1(t) and 

Fp2(t) at frequencies ωp1 and ωp2, respectively. The 

lowest order coupling synthesizes two modes via 

sum and difference generation of the excitation 

frequencies, resulting in a sum mode at ωp1+ ωp2 and 

a difference mode at |ωp1- ωp2|. Further, the sample 

is driven photoacoustically at the synthesized 

difference mode using an infrared quantum 

cascade laser (QCL) set at a wavelength where 

composition-dependent absorption takes place. 

The QCL energy is delivered to the interrogated 

region of the sample through an IR-transparent 

zinc selenide (ZnSe) substrate. The resulting signal 

S(t) from the microcantilever response via position 

sensing detection (PSD) forms a chemical map 

of the cellulose and lignin content of the sample 

at wavelengths near the 9 to 11 µm “fingerprint” 

region of the spectra. [Figure 1]

The specific biomass sample employed in our study 

is Populus deltoides, which is also known as the 

eastern cottonwood, a native to North America. 

Stem cross sections of 20 µm thickness were 

prepared using various processing stages that are 

designed to promote biomass conversion to ethanol 

[Jung et al. (2010)]. Fresh samples were left intact 

after microtoming. Extractive-free samples were 

the result of the extraction of waxes, fats, resins and 

other materials that are soluble in neutral solvents 

not generally considered part of the wood polymer 

structure. Holopulped samples were created after 

subsequent oxidative treatment that removes 

the lignin while preserving the morphology of 

Fig 2: HPFM image of a cross section of extractive-free Populus revealing nanoscale compositional distinction. The photonic (QCL) excitation is 
tuned to  λ= 1052.63 cm-1.  Probe drive frequencies are ω

p1
= 3.826 MHz and ω

p2
= 3.800 MHz. An interpretation of the subcellular chemical 

information of the cell walls can be made for the discontinuous cellulose-rich and lignin-rich regions.
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the sample. Additionally extractive-free samples 

were subjected to acid hydrolysis to remove 

hemicellulose. Lignin (“lignum” meaning wood in 

Latin), a major component in plants and in particular 

in the plant cell walls, is a hard and rigid material 

that can be elucidated with HPFM. By characterizing 

the Populus cross sections with HPFM, nanoscale 

morphological and chemical tracking of the 

biomass, as it moves through the processing stages, 

has revealed the extent of the lignin removal and 

evidence of increasing amorphousness. [Figure 2]

Conclusions 
From the obtained high spatial resolution 

spectroscopic images, we conclude that the HPFM 

presents a highly relevant measurement approach 

for organically complex samples. Naturally, as in any 

new measurement modality, a maturation process 

is expected to pave the way for high fidelity data 

with the ultimate goal of quantitative and high 

throughput measurement capability.      
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