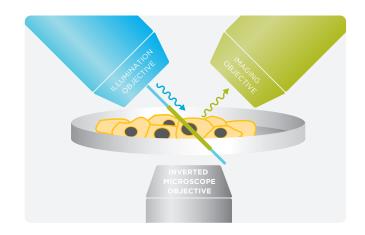
3i MARIANAS LIGHTSHEET

Versatile live cell light sheet microscope


Marianas LightSheet[™] merges the low phototoxicity and large specimen handling of dual inverted selective plane illumination (diSPIM) with the power and flexibility of a live-cell microscope system. diSPIM technology enables rapid 3D imaging of samples ranging from single cells to small organisms over the course of hours to days. Unlike capillary-based light sheet methods, diSPIM allows for standard specimen preparation in standard dishes in standard media. Combined with spinning disk confocal, TIRF, FLIM and photomanipulation, Marianas LightSheet is a powerful live-cell imaging workstation. SlideBook™ hardware and software integration seamlessly manages acquisition, alignment, deconvolution and rendering.

Rapid 3D imaging with isotropic resolution

Selective plane illumination (SPIM) uses a thin sheet of light to illuminate only the plane of interest, reducing phototoxicity by drastically cutting total light dose and allowing for prolonged specimen imaging.

diSPIM employs two orthogonal objectives positioned at 45° above the specimen plane. By alternating between the objectives for imaging and excitation, diSPIM captures two volumes that are fused and deconvolved to achieve isotropic resolution.

The sheet is swept through the sample at high speed while a piezo moves the imaging objective to capture data up to 600 images per second.

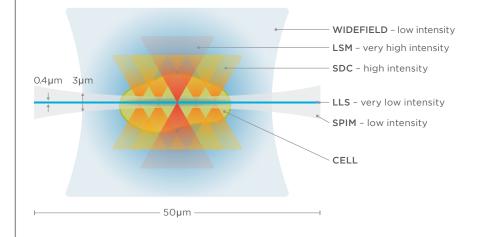
The most flexible sample accommodation of any light sheet

Drosophila embryo with DAPI staining of DNA

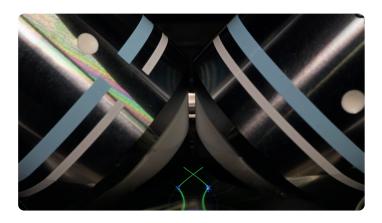
Horizontal specimen mounting supports conventional preparations such as coverslips and Petri dishes and provides a platform for custom-designed chambers.

Open sample chamber allows specimens of various sizes, ranging from cells to whole organisms.

Inverted microscope enables long term live cell experiments with available perfusion and incubator for full environmental control.



The ideal solution for cell viability


LIGHT DOSE / PHOTOTOXICITY

Peak light intensity is greatest in point-to-point scanning methods. Total light dose increases in methods that illuminate the entirety of the cell. SPIM is ideal for long-term live cell imaging due to the low light intensity compared to confocal and laser scanning systems.

Fully integrated software solution

Marianas LightSheet				X
XY Stage SPIM Z Drive	Imaging Piezo A	Imaging Piezo B	Sheet control	
X: -314.4 μm Ζ: -580.0 μm	Load Z: 0.0 µm	Z: 0.0 μm	Path A: sheet axis	
	00 um Go	r Center	0.000 *	Center
Y: 1.836 mm ▼ ▼ ▼ ▼	00 um Go		Path A: slice position	on
▼ 100 ▼ 10 1 .1 1000 m	um 10 1 .1 70 u	um 10 1 .1 70 um	0.000 °	Center
Controller Inputs Zeiss Axio	Dbserver Path control		Path B: sheet axis	
Joystick: XY Z: 29.2 µm	Path A: 🔽 Beam	Sheet	0.000 *	Center
Leftwheel: Upper Z (SPIM)	Path B: 🔽 Beam		Path B: slice position	
Right wheel: Slice A 🔹 💌 👻 🗸 🗸 Laser Switch 50 ms Set		0.000	Center	
Update All Limits 10 1 .	1 5 um UpperLED	Lower LED Toggle FL	Neutral All	HALT
Imaging center: 0.0 μm Go to Set center	1 um Adjust Link 100) ms Sides:	2 🗸	Time points: 100 Interval: 0 ms
Path A	Binn	ning: 1x1 - First side:	A 🔻	Channel A: 488A 🗨 Go
Calibration status: piezo -16.702 um	I Nor	ne 👻 Side delay:	100 ms	Channel B: 488B 🗨 Go
+ slice * 114.005 Slice: -0.468 *	Go to 0.761 Go to To	oggle Shutter	400	Beam Power: 100 Balancing: disabled
Objective: 40x Nikon ▼ Piezo: -70.0 µm	Set 70.0 μm Set —	Live Step size:	.25 um	Sheet Power: 100
Set Both Sheet width; 2.943° —	• —	Slice period:	20 ms	🔽 Calibrate dual camera 🔽 Grid Open Alt
STOP		Exposure time:	100 ms	64 128 256 99% CY Live
Sheet offset 0.021 *	• Ed	dit Sequence Advanced.	Update	512 1k Full Chip Update Execute

CAPTURE ---- FUSE ---- DECONVOLVE ---- ANALYZE

Integrated hardware and software control creates a seamless user experience with comprehensive control of acquisition and rendering.

SlideBook₆

- Software assisted camera and laser alignment
- High-speed deconvolution, fusion and 3D reconstruction
- Custom scripting and $\mathsf{MATLAB}^{\texttt{®}}$ integration

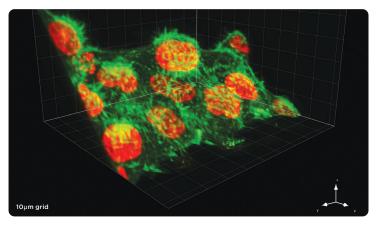
Upgrades

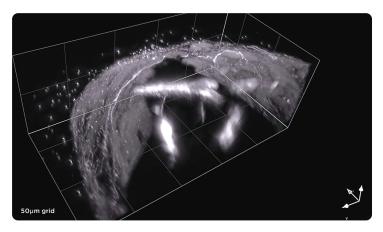
CSU-X1 and CSU-W1 Spinning Disk Confocal

mSwitcher Galvo-mirror 1ms optical path switching

Ablate! Pulsed 355nm or 532nm laser for rapid, precise tissue injury

Vector Scanner for FRAP, photoactivation, photoablation and uncaging


Phasor Computer Generated Holography System


VectorTIRF Motorized Spinning X,Y TIRF Illumination

Specifications

OBJECTIVES	10X water immersion, 0.3 NA, 3.5mm WD 20X water immersion, 0.5 NA, 3.5mm WD 40X water immersion, 0.8 NA, 3.5mm WD 16X multi-immersion RI 1.33-1.56, 0.4 NA, 12mm WD, CLARITY (coming soon)
OBJECTIVE TRAVEL	150µm or 300µm piezo translators
SPECIMEN MOUNTING	Horizontal stainless steel chamber 50mm x 24mm coverglass standard 95mm Petri dish Custom chambers available upon request
CAMERA	2048x2048 16-bit sCMOS 100fps Liquid cooling
LASER LINES	405nm, 445nm, 488nm, 515nm, 561nm, 594nm, 640nm
ENVIRONMENTAL CONTROL	Available perfusion system and full chamber incubator
COMPUTER	Dual 12-Core Xeon 2.3GHz CPUs 128GB RAM, 4GB GPU, 512GB solid state drive 2TB SSD RAID-10 drive array for data acquisition 10Gb Ethernet with optional multi-mode and single-mode fiberoptic connectivity

HeLa cells with fluorescently labeled Actin and DNA

4 day old live zebra fish larva expressing GFP

BUILT BY SCIENTISTS FOR SCIENTISTS. Intelligent Imaging Innovations (3i) designs and manufactures cutting edge live cell and intravital microscopy imaging platforms driven by 64-bit SlideBook software. 3i was established in 1995 by a group of scientists whose wide range of research activities includes cell biology, immunology, neuroscience and computer science. Our collective aim is to provide advanced multi-dimensional microscopy platforms that are intuitive to use, modular in design, and meet the evolving needs of investigators in the biological research community.

NORTH AMERICA

Intelligent Imaging Innovations, Inc. 3509 Ringsby Court Denver, CO 80216 USA

+1 303 607 9429 Fax +1 303 607 9430

info@intelligent-imaging.com www.intelligent-imaging.com

EUROPE

Intelligent Imaging Innovations, GmbH Königsallee 9-21 D-37081 Göttingen, Germany

+49 (0) 551 508 39 266

Fax +49 (0)551 508 39 268 Intelligent Imaging Innovations, Ltd 20-22 Wenlock Road London, England

3ieurope@intelligent-imaging.com