Preparing Lamellae of the Most Fragile Interfaces with a TripleBeam FIB MICHAEL DIXON¹, FELIX VON CUBE², KEITARO WATANABE³, TAKAHIRO SATO³,

MICHAEL DIXON¹, FELIX VON CUBE², KEITARO WATANABE³, TAKAHIRO SATO QUENTIN RAMASSE⁴, DEMIE KEPAPTSOGLOU⁴

Hitachi High-Tech Europe

¹Hitachi High-Tech Europe GmbH, Sci-Tech Daresbury, Cheshire, WA4 4AB, UK
²Hitachi High-Tech Europe GmbH, Europark, Fichtenhain A12, 47807, Krefeld, Germany
³Hitachi High-Tech Science corp., 36-1, Takanoshita, Oyama-cho, Sunto-gun, Shizuoka, 410-1393, Japan
⁴SuperSTEM, Sci-Tech Daresbury, Cheshire, WA4 4AD, UK

The correct interpretation of structured nanomaterials by TEM & STEM requires FIB-prepared lamella to have minimal induced damage, to be ultra-thin, and to be of uniform thickness over comparatively wide areas. Lamella of complex nanomaterials frequently suffer from Ga⁺ induced damage, bending, delamination, thermal damage, redeposition artefacts, and in severe cases, complete destruction of critical structures. This is especially true of fragile and weakly bonded organic-inorganic interfaces.

A solution to many of these challenges is the integration of a low energy glancing angle Ar^+/Xe^+ ion beam together with the Ga⁺ FIB-SEM. Using this TripleBeamTM technique the Ar^+/Xe^+ beam can be seamlessly integrated in the lamella preparation workflow. This provides a lower damage alternative to low kV Ga⁺ without the difficulty of placement of the comparatively large beam on a thin lamella. It also enables effective thinning even on bent lamella whilst offering greater thickness uniformity over wider areas. Challenging materials can be prepared as uniform, ultra-thin lamella quickly and repeatedly using this technique.