

The Rosalind Franklin Institute

A new national research centre designed to develop and accelerate the application of disruptive technologies and next-generation physical science methods that will underpin future advances in the life sciences, accelerate the discovery of new treatments for disease, and deliver new jobs and long-term growth.

- Formally announced by government in February 2017
- Five technology themes
- Led by ten University Partners plus STFC/DLS
- Hub and Spokes Model
- Ground breaking research and translation

Our Members

Imperial College London

UNIVERSITY OF LEEDS

Southampton

MANCHESTER 1824

The University of Manchester

UNIVERSITY OF CAMBRIDGE

Science & Technology Facilities Council

Who are we ?

- Institute Chair
 - Dr Vivienne Cox CBE
- Institute Director
 - Professor Jim Naismith
- Science Directors
 - Correlated Imaging / EM Professor Angus Kirkland (Oxford ePSIC and RFI)
 - Structural Biology Professor Jim Naismith (Oxford, RCaH and RFI)
 - Mass Spectrometry Professors Zoltan Takats (Imperial) and Josephine Bunch (NPL)
- Deputy Science Director
 - Correlated Imaging / EM Dr Judy Kim (Oxford ePSIC and RFI)
- Interim Theme Leads
 - Medicinal Chemistry Professor Adam Nelson (Leeds)
 - Imaging with Sound and Light Professor Ron Roy (Oxford)
- Chief Operating Officer
 - Dr Ellie Johnson-Searle
- Head of Communications
 - Laura Holland

Strategic aims

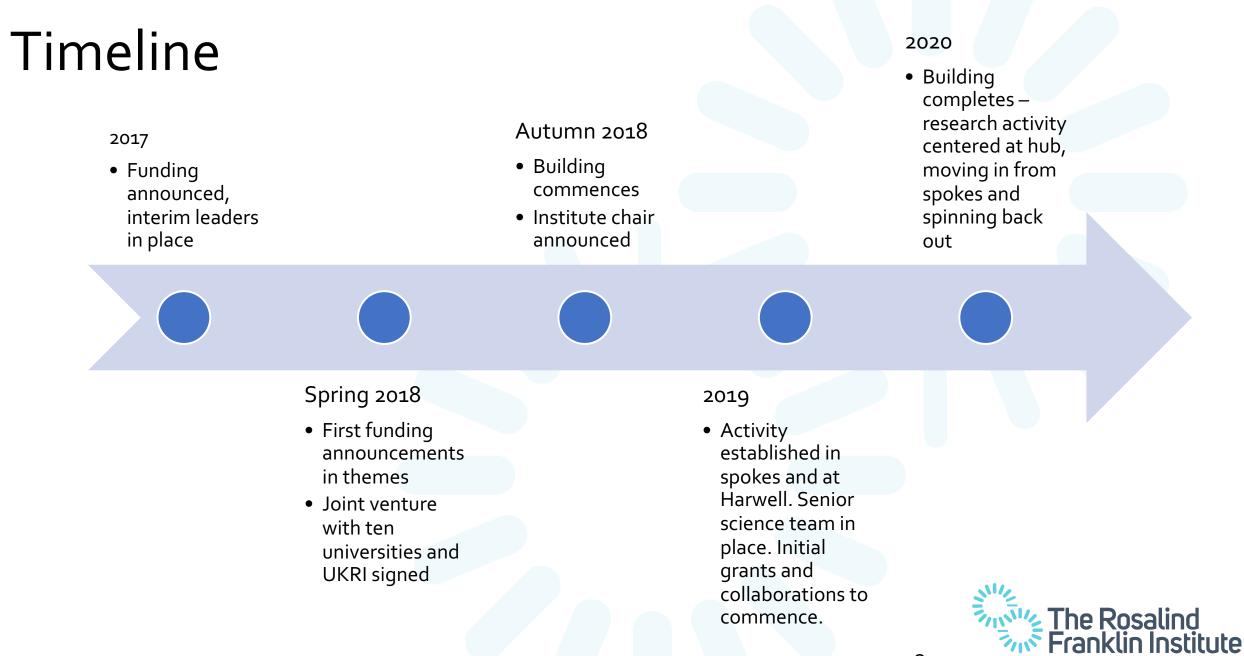
- Drive convergence of the physical sciences, engineering and life sciences in the UK and foster many-to-many links across academia and industry, acting as a national focal point
- Optimise the effectiveness of existing government investment in science infrastructure
- Develop (disruptive) new techniques and instrumentation to address known challenges and rate-limiting steps in the life sciences sector, broadly defined ("life science pull")
- Exploit opportunities offered by emerging physical science techniques by accelerating their application in the (academic and industrial) life and medical sciences ("EPS push")
- Become a Global Centre of Excellence for technology development and innovation, seed a new life sciences cluster, and enhance the UK skills base
- Support economic growth (regionally and nationally) and value creation

Features of RFI science

Adventure Projects which have significant risk, and significant pay-off if successful – more than would be tolerated through standard funding modes.

Engagement Our projects are not conceived of or delivered by one organisation – they engage multiple partners from academia and industry and there is demonstrable support for their development.

Novelty Our technologies will be novel in their application and design.

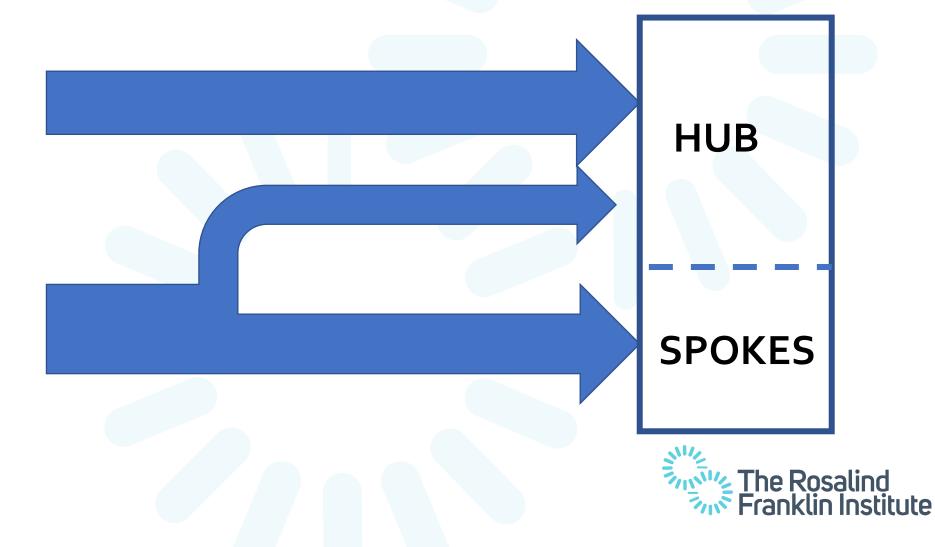

Utility Our technologies will be sought after by both academic and industrial communities, generating significant research and economic benefits.

The RFI Role

- We will complement not compete with Universities / other established Institutions.
- We will develop **disruptive** , not incremental instruments and methods.
- Successful developments will be made accessible through established National Facilities (EBIC / ePSIC for EM).

Building progress and features

- RIBA stage Four complete achieved in record time on campus - on track and on budget
- Spaces created for science no areas wasted, optimised for strong collaborative working with world leading lab facilities
- One of the world's most stable facility for EM – using state of the art construction techniques



RFI Evolution and Operation

CREATOR FUNDING RFI Core Funding CREATES Unique Technology Platforms [Approved]

USER FUNDING

Grants and contracts for research that USES the Unique Technology Platforms [Work to win]

The Big Challenges

- Imaging from cm to pm (not mm to nm) and from s to ns.
- Integration of other new instruments into the workflow; e.g. hyperspectral optical, labelfree, Raman, XCT and wide field X-Ray Imaging...
- General 3D correlation models; multi modal, multi spectral, multi length and time.
- Sample environments suitable for all instruments- open hardware / engineering.
- Coherent (open source) software to control the workflow.
- Big data; ML and AI.

