A description of the lacquered, brass, monocular microscope to determine the authenticity of the instrument and its accessories has been made by Jones (2006). The optical properties and imaging capabilities of the microscope lenses are described here and indicate what microscopists could see through their microscopes.
MATERIALS AND METHODS

The lenses
There are six objectives, numbered 1-6, each a single bi-convex component. Lens 1 gives the highest magnification and lens 6 the lowest. All six objective mounts have a serrated edge and three of them are shown in Fig. 1b. Objective number 5, unlike the others, has a rim inside this edge. The ends of this lens are pointed at both ends whereas the lenses in the other objectives have straight edges. There is an eyepiece lens, protected by a brass slider, and also a field lens.

Focal length of lenses
The method used to measure this parameter was that described by Reid (1998).

Abbe test slide
This was purchased from Carl Zeiss Ltd. and was based on the original slide made by E. Abbe in the 19th century. Spitta (1907) gives a description of the slide.

Photomicrography
An Olympus OM10 single-lens reflex camera, with lens removed, was attached to the eyepiece of the microscope with a cardboard tube and black paper to eliminate extraneous light. The light source to illuminate specimens on the stage was a 60-watt tungsten electric light bulb in an angle-poise lamp and the film used was 35mm Fujichrome 64T professional film.

RESULTS
Lens 3 (Figures 2 and 3) gives a fairly clearly defined photographic image of a cat flea and transverse section of Iris germanica stele. Lens 6 (Figure 5) gives a reasonable image of this transverse section. Lens 4 gives a somewhat poor image. Lenses 1, 2 and 5 give an image which is rather hazy and poorly defined. The cat flea shown in Figure 2 and imaged through lens 3 compares favourably in photographic quality with that achieved through a modern Olympus ‘Provis AX 70’ research microscope in an article by Jones (1996) and photographed by Mr. Roger Stacey, formerly of Olympus Optical Co. Ltd. However, the proboscis of the blue-bottle fly in a Victorian slide and imaged with the Cuff microscope (Figures 7, 8) does not compare in clarity with that photographed with the Provis microscope (Figure 9). There is debris on some of the transparencies (Figures 2, 3 and 6) and this is from the camera. No specimens were imaged through lens 1.

Lenses 3, 4 and 6 show typical signs of spherical aberration, common in early biconvex lenses, and
Fig. 4. Abbe test slide imaged through lens 3. Band of 10 lines is 0.6 mm wide.

Fig. 5. Transverse section of root stele of Iris germanica imaged through lens 6. Fieldwidth is 4.0 mm.

Fig. 6. Abbe test slide imaged through lens 6. The fieldwidth covering the 4 sets of 10 lines is 3.3 mm.
this manifests itself in distorted lines appearing in the Abbe test slide although the feature is not particularly marked (Figures 4 and 6).

Lenses 3 and 6 have focal lengths (in mm) of 12.03 and 27.28, respectively, and the corresponding numerical apertures are 0.08 and 0.058. These readings compare favourably with focal lengths of 12.3 and 30.24 and corresponding numerical apertures of 0.06 and 0.03 of lenses 3 and 6 of a late 18th Century Cuff-type microscope signed ‘Thomas Ribright London fecit ’ (Jones & Reid, 2006).

Dr Brian Bracegirdle, Editor of the Quekett Journal of Microscopy, has kindly provided the authors with corresponding focal lengths and numerical apertures of lenses 3 and 6 of a 1750/60 Cuff microscope of 8.18mm (NA 0.09) and 29.82mm (NA 0.04).

CONCLUSION

Both the flea and the root section of Iris germanica are fairly clearly imaged with lens 3 of the Cuff type microscope made about 200 years ago but are inferior in clarity to those imaged through the modern Olympus microscope. The proboscis is not clearly defined when photographed through the Cuff microscope. The images through this Cuff type microscope are superior to those seen through the Jones’s Most Improved Microscope made somewhat earlier in the late 18th Century (Jones, 1996). Of course, the fine focussing, a feature of the Cuff-type microscope, does help considerably during the photomicrography to produce sharper images and there does not appear to be the considerable fall-off in focus towards the perimeter of the image so characteristic of early single, biconvex lenses.

Acknowledgement

We thank Mr. Alan Lasslett of Olympus Optical Company for Figure 9.

REFERENCES

David Jones

39 Thorngrove House, 500 Great Western Road, Aberdeen AB10 6PF

Dr David Jones has retired from his position as Principal Microbiologist at the Macaulay Institute in Aberdeen, where he had a special interest in mycorrhizal fungi and fungal metabolites. He still prepares metabolites for the Institute and has an interest in historic microscopes.

John S. Reid

Department of Physics, Fraser Noble Building, The University, Aberdeen, AB24 3UE

j.s.reid@abdn.ac.uk

Dr John S. Reid is Senior Lecturer in the Department of Physics at the University of Aberdeen. He lectures and gives practical classes on optical science, amongst other topics, and curates the University’s outstanding collection of historic scientific instruments.