An improved design of stereo microscope manipulator for observation of small insects, mounted on card or card-point, is presented. The device allows movement of an object around three perpendicular axes in the field of vision. There is only one flexible joint between all the elements, and rotational movement is not realised by belt or gear drives. A standard pointer is used to mark the intersection point of all axes in 3D space for optimizing the mounting of the sample insects. An additional movable white screen can give a suitable backdrop for improved visualization of the insect samples. The main achievement of the device is reaching a precession (the slow movement of the axis of a spinning body around another axis) deviation in the intersection point of axes of approximately 0.3-0.5 mm.

Peter S. Boyadzhiev & Rozita N. Bozhinova

New mechanical manipulator for studies of mounted insects using stereo microscopes
Introduction

In taxonomic entomological investigations it is very important to have the exact measurements of different parts of an insect’s body and the ratio of its dimensions. Usually, the entomologists hold up and move the entomological pin by hand under the stereo microscope or use a piece of foam plastic, plasticine or other material for stable fixing of the pin at an accurate position. These methods are time-consuming, sometimes dangerous for the object or can cause errors in measurements of fine structures when the microscope’s magnification is high. An easier and relatively automated way to observe is by using a mechanical manipulator. The manipulator is the most suitable automated way to observe is by using a mechanical manipulator. The manipulator is the most suitable automated way to observe is by using a mechanical manipulator.

In the proposed new manipulator, the belt drive “outside” the supporting arm, after Lobanov & Kotjurgin (1975), is replaced by a solid flexible coupling “inside” the supporting arm. This allowed us to create modifications while retaining the features of earlier designs and corresponds better to the specific requirements for entomological studies of small insects, mounted on card or card-point.

Description of manipulator

The device presented has been developed for the improved observation and measurements of insects mounted on card or card-point according to Martin (1977) and Noyes (1982). In this case the mounted object is placed eccentrically toward the entomological pin axis. The design of the manipulator provides object movement with three degrees of freedom with small precession displacement.

The proposed device (Figure 1) consists of: a bearing (2) with an external diameter of 35 mm; supporting arm (5) with a rubber base (10) for holding an entomological pin (11); sheet steel base (17); sub-base (1) with screw (4), providing rotation of the steel base 360° around its axis. Pointer (13) marking the axes-intersection reference point, mounted on supporting pillar (12). Two rotational spindles at 90° to each other (7 and 9), mechanically coupled by a helical spring drive (8) ‘inside’ the supporting arm. This allows us to create modifications while retaining the features of earlier designs and corresponds better to the specific requirements for entomological studies of small insects, mounted on card or card-point.

The proposed manipulator has a more reliable connecting mechanism for rotational movement and a simplified design allowing ease of handling. It can be made easily with limited workshop facilities.

Assembling and adjusting

In the assembly process, one point must cross three axes. This is accomplished by using a stereo microscope with an eyepiece micrometer and a test-object with a size 0.2 - 0.3 mm. The test-object is mounted on a card-point and the latter is positioned at 12-13 mm from the top of the entomological pin – a standard length (after Martin 1977).

In assembly, first connect the bearing and the steel base with bush (3) (Figure 1) and screw. Next connect the supporting arm to the bearing so that...
The insect can be rotated around the intersection point of axes while remaining in the field of vision in high magnification.

from the beginning small movements in position are possible. After this, it is necessary to set the test-object above the axis of the spindle (9) so as to rotate around itself by turning the knob (6). This is observed and calibrated using the eyepiece micrometer at high magnification and the components locked in their relative positions using either solder or cyanoacrylate adhesives. Following this, the base (17) and sub-base (1) are assembled and adjusted to be on-axis with the test object. The precessional error on rotating all axis should not be greater than 0.3 – 0.5 mm. Finally, the supporting arm (5) (Figure 1) and a proportional increase in the dimensions.

Thus constructed, the manipulator allows common work with other well-known stereo microscopes used for entomological research. It is necessary to set the mounted insect at the intersection point of the axes for the correct use of the proposed device. This is easy to accomplish when all elements are set in the initial position shown in Figure 3. Then the top of the standard marks the intersection point of the axes 5 mm forward. This position can be found easily if, in process of assembling, it was marked on the already fixed holder (Figure 3). The screen is turned farther to one side so as not to be an obstacle. One should hold up the rubber base with two fingers of the left hand and stick the pin on the rubber base with the other hand, so that the insect stands 5 mm in front of the top of the standard. The standard can then be turned to one side so as not to be an obstacle. It is sufficient to rotate the knob completely to check the correctness of the fixing. If the fixing had been made correctly the insect may be turned around completely at the intersection point of axes. If it cannot, the pin must be re-fixed. In cases when the object is close to the intersection point, small changes in the position of the entomological pin over the rubber base can be made.

Using the ideas presented in this paper many variations are possible. For the left-handed operator the steel base can be created in mirror image of the schematic diagram in Figure 2; for objects larger than 1 cm, manipulators of larger dimensions may be created by increasing the length of the supporting arm (5) (Figure 1) and a proportional increase in the dimensions.

Results

The schematic diagram shown is the result of the experience of a three-year experiment (2001–2004) by the first-named author in creating the optimum mechanical manipulator for faunistic and taxonomic studies of small insects mounted on card or card-point. Seven working devices have been successfully created, of which six have been placed at the disposal of Dr. A. Gumovsky (Schmalhausen Institute of Zoology, Ukraine), Dr. V. Beshovsky (Institute of Zoology, Bulgarian Academy of Science, Sofia), Dr. A. Stojanova and Dr. D. Bechev (Department of Zoology, University of Plovdiv, Bulgaria), Dr. S. Petrov and Assit. Prof. O. Todorov (Agricultural University, Plovdiv, Bulgaria). The manipulators are used for taxonomic and faunistic investigations of different species of insects from Hymenoptera and Diptera. The number of specimens investigated is over 3,000, including type specimens from genus Puklina Graham, Entedon Dalman and Glyphomerus Förster (Hymenoptera, Chalcidoidea).

Each of the devices has been tested for alignment accuracy at the end of assembling. For this purpose, a test-object (0.2 – 0.3 mm) mounted on card-point and fixed at a standard distance from the top of the entomological pin has been used. The eyepiece measure scale was calibrated in advance with an object-micrometer. The precess deviation was measured using a similarly calibrated stereo microscope at maximum magnification when the test-object was at the intersection point. The test results showed that each manipulator has a precess deviation at the intersection point on the order of 0.3-0.5 mm. This deviation is perfectly sufficient even for observing and investigating small insects with dimensions of 0.7–10 mm. The tests also showed that insects remain in the microscope’s field of vision during rotation, changing the observation position if the entomological pin is fixed correctly. When the position is changed, small defocusing results from object volume and the small depth of focus are possible. This requires fine re-tuning of the stereo microscope focus.

One of the main requirements of the type specimen studies (especially holotypes and paratypes) is absolutely secure fixing of the object in the process of observation. The proposed manipulator fully satisfies this requirement by the advance dismantling of the holder (12) (Figure 1).

Specimens were safeguarded from accidental damage in the entire process.

Then the base performs the part of the screen for object observation. In this case, observation of the insect’s transparent parts was accomplished in diffuse reflected light when the white-coloured steel base was irradiated by an additional light source placed near the stereo microscope.

Most of the above-mentioned objects investigated have dimensions of 1-10 mm. Using the proposed manipulator, the time for observation and determination was shortened considerably by the quick and exact adjustment of the insect in the field of vision at the right angle of view. In addition, the specimens were safeguarded from accidental damage in the entire process of investigation.
Conclusion
The proposed manipulator allows the entomologist a simple and exact adjustment of insects in the right position (angle of view) for observation and at the same time ensures the maximum security of the objects being investigated. The device facilitates entomologists in their investigation of small insects and shortens the time for adjusting and measuring. In addition, the proposed manipulator allows observation of insects from different orders, including type specimens with dimensions up to 1 cm.

Acknowledgments
We are indebted to Dr. V. Beshovsky (Institute of Zoology, Bulgarian Academy of Science, Sofia) for his valuable collaboration. We are also grateful to Dr. A. Vassilev (Technical University, Sofia) for drawing a three-dimensional view of the manipulator. Special thanks go to the fund “Scientific Research” of the University of Plovdiv “Paisii Hilendarski” for supporting the research presented, and to part–time lecturer Jim Day (Department of English Philology, University of Plovdiv, Bulgaria) for editing of the English language version of the manuscript.

References

Dr. Peter Boyadzhiev is a lecturer of Zoology and Ethology in the Department of Zoology, Plovdiv University. He has scientific interests in faunistic and taxonomic investigation of the Eulophidae family (Insecta: Hymenoptera) in Bulgaria. He has described a new species for science from the genus Pukline Graham (Eulophidae: Tetrastichinae), and he has announced over 120 species new to the fauna of Bulgaria.

Rozita N. Bozhinova
Department of Experimental Physics, University of Plovdiv “Paisii Hilendarski”,
24 Tzar Assen Str., 4000 Plovdiv, Bulgaria
ronibo_2005@yahoo.com

Rozita Bozhinova has been Chief Assistant Professor in the Department of Experimental Physics since 1988. She graduated in Physics-Lasers and Laser Technologies. Her scientific field is Optics-Interferometry and Fiber Optics. Her recent projects are in the area of Fiber Optics applications in Structure Health Monitoring and Laser Shearography.