Current RMS Honorary Fellows

Honorary Fellowships are bestowed by the Society for eminence in microscopy or related branches of science or for exceptional service to science

The process through which the Society admits new Honorary Fellows is designed to reflect the prestigious nature of the Fellowship, and to ensure that only those candidates who have made the most outstanding contributions to microscopy or related branches of science can be considered for the honour. The RMS expressly encourages nominations in support of candidates from diverse backgrounds.

New nominations for potential Honorary Fellows need to be submitted by a current RMS member. The nominator should submit to RMS Chief Executive, Sali Davis, a copy of the nominee’s CV, including a full list of their publications, 10 selected ‘top’ publications, and a 500-word summary of their contributions to research involving microscopy. A supporting letter, signed by five other RMS members, should also be submitted by the nominator.

The proposal is then put before the RMS Council, which has absolute discretion in approving or rejecting the nomination.

The Society's By-Laws previously limited the number of Honorary Fellowships to a maximum of 65 at any one time. However, a proposal to enable new Fellowships to be awarded beyond this figure was approved at the 2019 AGM, and subsequently by the Privy Council.

Current RMS Honorary Fellows

Honorary Fellowships awarded in 2023

Professor Grace Burke Hon FRMS Professor Grace Burke Hon FRMS

Grace, Professor Emeritus at the University of Manchester, is INL Laboratory Fellow at the Idaho National Laboratory, where she is scientific lead for reactor structural materials, having previously been Corporate Fellow at Oak Ridge National Laboratory.  From 2011 through 2021, Grace was the Director of the Materials Performance Centre and Professor of Materials Performance in the School of Materials at the University of Manchester. She was also Director of the Electron Microscopy Centre from 2012 through 2016. Grace is a physical metallurgist for whom microstructural characterisation has always represented an integral and fundamental component of research into materials performance.  She obtained her BS in Metallurgical Engineering from the University of Pittsburgh, and her PhD in Metallurgy from Imperial College of Science and Technology where her SCC research work included analytical, high voltage and in situ electron microscopy.  Grace then joined the US Steel Research Laboratory where she conducted research on ferrous alloys including the use of atom probe field-ion microscopy as a complementary technique to AEM in the investigation of commercially important materials.

Subsequently, Grace joined the Westinghouse Science & Technology Centre where she applied of combinations of AEM and APFIM techniques to a broader range of nuclear and power generation materials.  In 1994 she moved to the Bettis Atomic Power Laboratory in order to focus her research on the environment-sensitive behaviour of engineering alloys in nuclear reactors, and, in 2009, was the first woman to be promoted to the highest scientific position, Consultant.
At Manchester and her subsequent positions, Grace has continued her to employ her established portfolio of advanced techniques to address a range of materials issues to investigate precursor reactions of material degradation liquids and gases, and irradiation-induced behaviour.  Grace was the 2005 President of the Microscopy Society of America and has been a Fellow of RMS since 1988. She is also a Fellow of ASM International, the Microscopy Society of America, the Microanalysis Society, IOM3 (UK), and TMS (USA). 

Professor J Paul Robinson Hon FRMS Professor J Paul Robinson Hon FRMS

Joseph Paul Robinson, known as Paul and even ‘JPR’, has made a huge contribution worldwide to the field of Cytometry. This includes his list-serv ‘Purdue Cytometry List’ which is utilised by over 4,500 cytometrists, his work to teach Cytometry in Africa through his Cytometry for Life organisation, and his patented Cytometry technologies.

JPR is the Distinguished Professor of Cytometry at Purdue University. Indiana, USA. He is the past president of the International Society for the Advancement of Cytometry (ISAC) (2006-2008), is Editor-in-chief of Current Protocols in Cytometry, Associate Editor of Histochemica et Cytobiologica and past Associate Editor of Cytometry Part A.

He has published over 200 peer-reviewed publications, 36 book chapters, edited 10 books and given hundreds of international lectures and conference presentations. He also contributed a keynote speaker at the flowcytometryUK meetings in 2007 and 2016. 

JPR has been active at the forefront of flow cytometry and microscopy development for several decades. His most notable achievements have been in developing innovative technologies such as spectral cytometry using multiarray PMTs (which has been commercialised by Sony and Thermo Fisher); developing optical tools for quantitative fluorescence measurement; advanced classification approaches for clinical diagnostics and bacterial classification; high content, high throughput screening technologies - specifically novel analytical software; and most recently, the development of single photon detectors in flow cytometry which would enhance the limit of detection.

JPR was the founder of ‘Cytometry for life’, a not-for-profit charity launched to focus attention on the need for low-cost CD4 technology for developing countries ( To further draw attention to the issue of low-cost CD4, he successfully summited Mount Everest in 2009. 

JPR’s unique contributions to Cytometry over the past 25+ years have been global. He has been recognised internationally for his contributions, including being awarded the ISAC Membership award in 2014 and the Distinguished Service Award in 2019.

He is also a Fellow of the American Institute for Medical and Biological Engineering (2004), Fellow of the American Association for the Advancement of Science (2020), and a Fellow of the National Academy of Inventors (2023)

Honorary Fellowships awarded in 2021 

Professor Ed Boyes, Hon FRMS Professor Ed Boyes, Hon FRMS

During a career spanning more than 50 years, Ed’s work in materials research has focused on detailed microstructural analysis to generate fundamental understanding of materials’ behaviour at the nanoscale.

From his PhD research using field-ion microscopy of non-refractory metals including aluminium and thin films at Cambridge and high resolution transmission electron microscopy. Through his impressive career at the University of Oxford and DuPont Research Laboratory in the US, Ed worked with Dame Pratibha Gai Hon FRMS to pioneer the development of the atomic resolution environmental TEM/STEM for in situ materials research, as well as the first low voltage SEM with chemical analysis.

In 2007, Ed co-founded the York JEOL Nanocentre alongside Dame Pratibha Gai Hon FRMS, where they jointly continue to expand ETEM in situ research activities in nanoparticles, fuel cells and catalysis research, and develop the aberration-corrected ESTEM.

Ed has authored or co-authored more than 200 peer-reviewed scientific papers and numerous conference papers dealing with in situ TEM studies, particularly for catalysis and nanoparticle behaviour.  He has presented many invited keynote scientific conference presentations in 20 countries and taken on the role of organiser and chair of nearly two dozen international electron microscopy symposia.

Ed served as UK representative on the European Union committee on future microscopies from 1987-9. Later, he was appointed to Technical Advisory Group for the US President’s Council of Advisors on Science and Technology (PCAST) policy and performance review of the National Nanotechnology Initiative (NNI), as one of three mainstream US industry representatives (2003) and reappointed to nTAG (2007) for ongoing oversight advice and periodic program review. He has served both on the RMS Council and as Chair of the Materials Committee (now known as the Engineering and Physical Sciences Committee).

RMS President Professor Grace Burke said: “Throughout his career, Ed has made substantial, sustained and world-leading contributions in our field, and continues to push boundaries with his materials research activities at the University of York. In addition to his work as a scientist, Ed has made outstanding and exemplary service contributions as an educator, scientific advisor and communicator on the international stage. It is my very great pleasure to welcome him as an Honorary Fellow of the Royal Microscopical Society.

Professor Alan Craven, Hon FRMS Professor Alan Craven, Hon FRMS

During his distinguished career, Professor Alan Craven has been a significant figure in the development of the STEM-EELS technique helping its progression from a niche experimental technique into a mainstream quantitative analysis tool. As well as developing instrumentation and techniques, he has collaborated with academics and industrialists working on the development of a wide range of advanced materials and devices.  As such, Alan’s work and his scientific insight are held in very high regard by the analytical microscopy community and manufacturers of microscopes alike.  Many of his published articles have also widened the applicability and use of EELS, to the benefit of the science community as a whole.  

For his PhD at Cambridge University, Alan built an ultrahigh vacuum field emission scanning electron microscope for surface studies in the Cavendish Laboratory.  He was then appointed as the post-doctoral research assistant in charge of the first VG Microscopes HB5 scanning transmission electron microscope (STEM). He led the team that overcame the many teething problems and developed imaging, micro-diffraction, electron energy loss spectroscopy (EELS), and Lorentz microscopy techniques.
Later, at Glasgow University, he led the further development of STEM by specifying microscope features that are now considered standard, such as two condenser lenses, a high excitation objective lens, a z-lift stage, three post-specimen lenses and a virtual objective aperture. He was also one of the founding applicants for SuperSTEM, the current national facility for high spatial resolution STEM.
Alan has served on the RMS Council, as Chair of the Electron Microscopy and Analysis Group of the Institute of Physics and as a member of the Executive Committee of the International Federation of Societies of Microscopy. Since his retirement in 2012 he has continued his contribution to the development of Electron Energy Loss Spectroscopy (EELS). His latest works focus on optimising EELS performance for the widely used TEM/STEM platform. 
RMS President Professor Grace Burke said: “Alan’s work is held in the highest regard by the scientific community, and his contributions to the development of techniques and instrumentation have been invaluable to the advancement of electron microscopy. His outstanding achievements are truly deserving of the Society’s highest accolade, and I am especially delighted to welcome him as an Honorary Fellow of the Royal Microscopical Society.”

Honorary Fellowships awarded in 2020

Professor George D.W. Smith FRS, Hon FRMS Professor George D.W. Smith FRS, Hon FRMS

Professor George Smith is an internationally-recognised pioneer in atom probe field-ion microscopy. His contributions to the fields of Microscopy, Metallurgy, and Materials Science have extended over 50 years, leading to paradigm-shifting developments in both our scientific understanding of materials and in microstructural characterisation at the atomic scale.

A Fellow of the Royal Society and numerous other UK and international scientific societies, Professor Smith is also the recipient of numerous prestigious international scientific and engineering awards.

George’s early research using field-ion microscopy provided fundamental understanding of atomic-scale structures, as well as the correlation of nano-scale microstructure with the behaviour of materials - both in terms of transformation behaviour and precipitation phenomena in metallic materials.  His extensive knowledge, expertise and his leadership in metallurgy/materials science and atom probe microanalysis resulted in the formation of prolific and extensive research programs studying phase transformations in alloys, segregation phenomena, irradiation damage, oxidation, semiconductors, metal matrix composites, and nanostructured materials.

Under Professor Smith’s guidance and direction, the Oxford Group made major advances in atom probe analysis – both in the technique and in data quantification/analysis – which impacted the assessment of complex microstructures.

His visionary leadership is especially noteworthy in the development, with Professor Alfred Cerezo and Mr Terence Godfrey, of the first 3-Dimensional Atom Probe: the Position Sensitive Atom Probe (also known as the “PoSAP”) and the subsequent improvements resulting in the Energy Compensated Optical Position Sensitive Atom Probe. This scientific break-through

revolutionised the atom probe technique for atomic scale microanalysis and earned the team numerous awards - including the prestigious International R&D 100 Award for outstanding inventions.

In addition to his superlative research accomplishments Professor Smith is renowned as an outstanding educator and mentor, maintaining the highest ethical standards, and the highest regard for his students and colleagues

Professor Peter D. Nellist FRS, Hon FRMS Professor Peter D. Nellist FRS, Hon FRMS

Professor Nellist is a materials scientist who has pioneered new techniques for atomic-resolutionmicroscopy.

Viewing the arrangement of atoms in materials, and in particular at defects in crystals, is a key tool for explaining the properties of materials enabling the development of new materials.

Professor Nellist’s work has focused on scanning transmission electron microscopy and its application across a range of functional and structural materials. He is known for the practical implementation of electron ptychography which allows light elements to be detected while reducing beam-induced damage, and to the theory underlying quantitative image interpretation.

He has made fundamental contributions to the development of correctors for the inherent aberrations of electron lenses and their use for the three-dimensional imaging of materials. Professor Nellist is a Fellow and former President of the Royal Microscopical Society, a former board member of the European Microscopy Society and is a Fellow of the Royal Society.

He has been awarded the Burton Medal of the Microscopy Society of America and the Ernst Ruska Prize of the German Electron Microscopy Society. He also develops activities aiming to widen participation in science and promoting progression from schools to higher education.

Professor Knut Urban, Hon FRMS Professor Knut Urban, Hon FRMS

A true giant in his field, Professor Urban’s name will be forever associated with ForschungszentrumJülich, which under his leadership, first as Director of the Institute for Microstructure Research and then as inaugural co-director of the Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, has become one of the most influential and important centres for electron microscopy in the world.

Prof. Urban’s accomplishments as a metallurgist, materials scientist and as an electron microscopy visionary, have been widely recognised by numerous prestigious national and international awards such as the Materials Research Society’s von Hippel Award or the Wolf Prize in Physics.

Perhaps most notably he recently shared the 2020 Kavli Prize in Nanoscience with microscopy pioneers Profs. Rose, Haider and Krivanek, all three RMS Honorary Fellows themselves, for “sub-ångström resolution imaging and chemical analysis using electron beams”. This recognition helped once more to shine a spotlight on the field of electron microscopy and its contribution to modern science. It is indeed his leadership in TEM, and his tireless advocation for and provision of the exceptional research environment at FZ Jülich that would make the development and implementation of aberration correction in the transmission electron microscope possible.

Professor Urban went on to oversee further methodological and technical breakthroughs in the field, such as the negative Cs imaging technique, now widely used by scientists worldwide.

Dr Anne E. Carpenter, Hon FRMS Dr Anne E. Carpenter, Hon FRMS

Dr Carpenter is an Institute Scientist at the Broad Institute. She has made an exceptional contribution to the field of microscopy, notably in the development of open-source tools and resources for image analysis and continued support of the microscopy image analysis community.

Dr Carpenter is the inventor-creator of CellProfiler, the open-source software platform for high-throughput biological-image analysis. This is now the gold-standard resource for analysis of cell-based high-throughput imaging experiments and high content analysis. As of September 2020 CellProfiler has been cited in over 9,200 scientific publications.

Dr Carpenter was an early pioneer of image-based profiling related to gene expression profiling but using microscopy images as the data source. Her lab were co-inventors of the Cell Painting assay, which is now widely used for this purpose. She also organises and maintains the Broad Bioimage Benchmark Collection, which is a collection of freely downloadable microscopy image sets that have been used in over 200 studies thus far. She is also a co-creator of the Scientific Community Image Forum – a public discussion forum for all questions relating to image analysis.

Dr Carpenter is an inspirational and highly-regarded educational speaker, presenting at international scientific workshops and meetings, contributing to online programmes such as the iBiology series, and at local schools and colleges.

Since establishing herself as an independent scientist, she has also supervised more than 40 postdoctoral staff and 20 graduate research students, many of whom have become independent faculty or group leaders in industry.

Dr Carpenter has been awarded numerous honours, fellowships, and research grants from the National Institute for Health, the National Science Foundation, and the Human Frontiers in Science Programme, and collaborates extensively to accelerate the use of images in the pharmaceutical industry.

Her commitment to providing researchers with useful software and creating supportive environments for those who wish to learn more about image analysis embodies the spirit of the Royal Microscopical Society’s aims to further the science of microscopy and to provide help to the community.


  • Professor Mervyn Miles FRS, FInstP, Cphys, Hon FRMS
    • Professor Mervyn Miles FRS, FInstP, Cphys, Hon FRMS

      Mervyn Miles is currently Emeritus Professor of Physics, School of Physics, University of Bristol and a Fellow of the Royal Society. He was one of the UK pioneers of scanning probe microscopy (SPM) and in particular its development and application to biological systems. In the mid-1980s he was one of the first researchers to apply scanning tunnelling microscopy to protein imaging. He went on to apply atomic force microscopy (AFM) to a range of biological systems, first at the Institute of Food Research in Norwich, and then, from 1990 in Bristol. On moving to Bristol, he started to work on development of SPM techniques, first scanning near field optical microscopy, and then AFM. After developing liquid Q-control, a method for enhancing force sensitivity for biological imagine, he went on to pioneer high speed AFM. This is one of the major roadblocks in the applicability of AFM, both for following processes and for rapid surface analysis and industrial applications, and the Miles group has been one of the two leading groups in this field in the world (the other being that of Prof Toshio Ando, Kanazawa University, Japan). The approaches taken by Mervyn elegantly side-stepped some of the traditional barriers to high-speed scanning, and are just now, fifteen years later, starting to be incorporated into commercial laboratory machines. 

  • Professor C Barry Carter Hon FRMS
    • Professor C. Barry Carter, Hon FRMS

      In a research career spanning the last 50 years, Barry has made a huge impact in materials science - especially in advancing our understanding of the role and nature of defects in metals, semiconductors and ceramics.

      Using various techniques including transmission electron microscopy, high resolution TEM, and electron diffraction, Barry has established himself as an internationally distinguished researcher who has made critical contributions to both the science and application of microscopy.

      Barry, who remains an active Emeritus Professor at the University of Connecticut, and as a Distinguished Affliliate Scientist at the Sandia National Laboratory, has also made vital contributions to microscopy education at the undergraduate, graduate and post-graduate levels.

    • Professor David B Williams, Hon FRMS

      Professor Williams is synonymous with Analytical Transmission Electron Microscopy (ATEM) having pioneered its development and applications to a broad range of materials.

      Over the past 45 years his work has led to a new understanding of materials and microstructural evolution, including segregation, precipitation phenomena, phase diagrams and phase transformations in metals and alloys.

      Among his achievements, Professor Williams is widely recognized for his prolific research in Al alloy metallurgy – particularly in his pioneering research into Al-Li alloys, as well as fundamental research in EELS and STEM-EDX microanalysis.

      David is currently Executive Dean of the College of Engineering at The Ohio State University.

  • Dame Professor Pratibha Gai FRS Hon FRMS
    • Dame Professor Pratibha Gai FRS Hon FRMS

      Dame Pratibha Gai is internationally recognised as a pioneer in the use of environmental transmission electron microscope (ETEM) particularly with application to catalysts.  She has published over 300 refereed scientific papers in leading journals and 9 co-authored and edited books and journal issues and numerous invited lectures globally. 

      Her awards include the L’Oreal-UNESCO Women in Science award as the 2013 Laureate for Europe, and the Institute of Physics 2010 Gabor Medal and Prize for in-situ atomic resolution-environmental transmission electron microscopy (ETEM).  She is Fellow of Institute of Physics, Fellow of the Royal Society of Chemistry, Fellow of the Institute of Materials, Minerals and Mining and a Fellow of the Royal Society (FRS).  She was appointed a Dame (DBE) in the 2018 New Year Honours for services to chemical sciences and technology.

  • Professor Joachim Frank Hon FRMS
    • Professor Joachim Frank Hon FRMS

      He was awarded the Nobel Prize in Chemistry in 2017, for his contribution to solving structures by cryoEM and single particle image processing, for his particular contribution of image processing to this technique.

Honorary Fellowships Awarded in 2017
  • Professor Lawrence Michael Brown FRS Hon FRMS
    • Professor Lawrence Michael Brown FRS Hon FRMS

      For his pioneering work on the quantitative applications of electron microscopy to the measurement of strain fields at precipitates and dislocations, and the study of energetics and growth kinetics of damage clusters in irradiated materials. In addition, his work on the application of transmission electron microscopy and notably scanning TEM (STEM) and electron energy loss spectroscopy (EELS) to metals, diamond, nuclear materials and semiconductors.

  • Professor Stefan W Hell Hon FRMS
    • Professor Stefan W Hell Hon FRMS

      His extraordinary contributions to the field of Light microscopy, leading to the development of the first commercial STED microscope in 2006. He received a Nobel Prize for ‘the development of super-resolved fluorescence microscopy’ in 2014.

  • Professor Dr Wolfgang Baumeister Hon FRMS
    • Professor Dr Wolfgang Baumeister Hon FRMS

      For pioneering the development of cryo-electron tomography and his seminal contributions to our understanding of the structure and function of the cellular machinery of protein degradation, in particular the proteasome.

  • Dr Frances Ross Hon FRMS
    • Dr Frances Ross Hon FRMS

      For the development of new electron microscopy methodologies, and the application of electron microscopy to further the understanding of semiconductor nanostructures and functional nanomaterials. Frances has pioneered the development of electron microscopy in liquid environments, developing novel liquid cells for TEM.

  • Professor Bridget Carragher Hon FRMS
    • Professor Bridget Carragher Hon FRMS

      For her work as one of the leaders of the “Resolution Revolution” in the Cryo EM field. She has been one of the early adapters of the Direct Electron Detectors and as part of NRAMM worked on the development of Leginon, an automated software for image acquisition of cryo EM images. 

  • Professor Brian J Ford Hon FRMS
    • Professor Brian J Ford Hon FRMS

      For his significant contribution to the field and to the popularisation of microscopy and biology. His work in plant physiology on plant secretion gave rise to the new science of phytoremediation. He has published on the microscopy of forged photographs, food science, microbiology, forensic analysis, and cell microscopy and blood coagulation. 

  • Professor Sir John Pethica FRS Hon FRMS
    • Professor Sir John Pethica FRS Hon FRMS

      After introducing the concept of forces acting between the tip and surface in scanning tunnelling microscopy, leading directly to Binnig’s invention of AFM, he has made many influential discoveries in this field, including the implementation of a novel AFM using sub-A modulation, allowing force gradients to be imaged directly with atomic resolution and to obtain mechanical characterisation of individual chemical bonds.

  • Professor Paul Midgley FRS, Hon FRMS
    • Professor Paul Midgley FRS, Hon FRMS

      For his pioneering use of electron tomography beyond the nanometre scale, establishing the technique as a keen tool in materials characterisation and for extending the application of precession electron diffraction to materials with particularly valuable properties. 

  • Dr Eric Betzig Hon FRMS
    • Dr Eric Betzig Hon FRMS

      For his numerous contributions to the field of microscopy including the development of PALM (photoactivated localisation microscopy) and his further development of PALM to image multiple fluorophores. His development of super-resolved fluorescence microscopy and more recently, lattice light-sheet microscopy; which allows gentle imaging of molecules to embryos with a high spatiotemporal resolution.


The following Honorary Fellowships were awarded prior to 2010.

2008 Professor Harald Rose Hon FRMS
2005 Mr Paul Hirst Hon FRMS
2001 Professor Sumio Iijima Hon FRMS
2001 Professor M J Whelan Hon FRMS  
2000 Professor G A D Briggs Hon FRMS 
1998 Dr Peter J Evennett Hon FRMS
1998 Professor Tony Wilson Hon FRMS
1993 Professor Hellmuth Sitte Hon FRMS 
1989 Dr P N T Unwin Hon FRMS
1988 Professor Gerd Binnig Hon FRMS 
1987 Professor Sir Eric A Ash Hon FRMS
1984 Professor C F Quate Hon FRMS  
1982 Dr M Karnovsky Hon FRMS 
1981 Dr James V P Long Hon FRMS
1978 Professor Archie Howie FRS, Hon FRMS
1978 Professor Ewald R Weibel Hon FRMS
1977 Professor Sir Peter Hirsch Hon FRMS 
1976 Professor J S Ploem Hon FRMS