As part of the Imaging ONEWORLD series, the focus of these lectures is on microscopy and image analysis methods and how to apply these to your research. Almost all aspects of imaging such as sample preparation, labelling strategies, experimental workflows, ‘how-to’ image and analyse, as well as facilitating collaborations and inspiring new scientific ideas will be covered. Speakers will be available for questions and answers. The organisers, CRUK CI core facility staff, Gurdon Institute, MRC-LMB, MRC Cancer Unit and NPL will be able to continue the discussion and provide advice on your imaging projects.

Scientific Organisers


Overcoming physical resolution limits of fluorescence microscopes with sparse deconvolution 

Here we will present two pieces of high-resolution fluorescence microscopy methods we invented for live sample imaging. The first one is for live-cell long-term super-resolution (SR) imaging. We have developed a deconvolution algorithm for structured illumination microscopy based on Hessian matrixes (Hessian-SIM). It uses the continuity of biological structures in multiple dimensions as a priori knowledge to guide image reconstruction and attains artifact-minimized SR images with less than 10% of the photon dose used by conventional SIM while substantially outperforming current algorithms at low signal intensities. Its high sensitivity allows the use of sub-millisecond excitation pulses followed by dark recovery times to reduce photobleaching of fluorescent proteins, enabling hour-long time-lapse SR imaging in live cells. 
After the first work, we realized that the spatial resolutions of live-cell super-resolution microscopes are limited by the maximum collected photon flux. Taking advantage of a priori knowledge of the sparsity and continuity of biological structures, we develop a deconvolution algorithm that further extends the resolution of super-resolution microscopes under the same photon budgets by nearly twofold. As a result, sparse structured illumination microscopy (Sparse-SIM) achieves ~60 nm resolution at a 564 Hz frame rate, allowing it to resolve intricate structural intermediates, including small vesicular fusion pores, ring-shaped nuclear pores formed by different nucleoporins, and relative movements between the inner and outer membranes of mitochondria in live cells. Likewise, sparse deconvolution can be used to increase the three-dimensional resolution and contrast of spinning-disc confocal-based SIM (SD-SIM), and operates under conditions with the insufficient signal-to-noise ratio, all of which allows routine four-color, three-dimensional, ~90 nm resolution live-cell super-resolution imaging. Overall, we argue that sparse deconvolution may be a general tool to push the spatiotemporal resolution limits of live-cell fluorescence microscopy.